Transform a complete case dataset according to the MAR mechanism.The MAR mechanism assumes that the probability of missingness in a variable depends on the observed data but not on the missing data itself. This function introduces missing values in selected features of a dataset, with the missing values determined by the values of the causative (target) feature.
Examples
set.seed(123)
data <- gen.mcar(100,rho = c(.15,.25,.12,.45,.34,.54),sigma = c(1,2,1,2),n_vars = 4, na_prob = 0)
mar_data <-mar.transform(data,"V1",c("V2","V3"), na_rate = .25)
#> Warning: One or more features are at risk of being entirely NA.
summary(mar_data)
#> V1 V2 V3 V4
#> Min. :-2.30917 Min. :-3.81356 Min. :-1.72154 Min. :-4.58910
#> 1st Qu.:-0.49385 1st Qu.:-1.29734 1st Qu.:-0.44964 1st Qu.:-1.23381
#> Median : 0.06176 Median :-0.04843 Median : 0.03793 Median : 0.09614
#> Mean : 0.09041 Mean :-0.07917 Mean : 0.19091 Mean : 0.06959
#> 3rd Qu.: 0.69182 3rd Qu.: 1.07806 3rd Qu.: 0.61703 3rd Qu.: 1.48147
#> Max. : 2.18733 Max. : 4.38669 Max. : 2.39781 Max. : 4.32329
#> NA's :38 NA's :38