Skip to contents

All functions

check.mar()
MAR check using logistic regression
check.mcar()
Little's test for missing completely at random (MCAR)
check.missing()
Check percent of missing values in data frame or matrix
cmean.impute()
Conditional Mean Imputation (CMI)
coldeck.impute()
Cold deck imputation
gen.mar()
Generate a data frame with values missing at random
gen.mcar()
Generate a data frame with values missing completely at random
gen.mnar()
Generate a data frame with values missing not at random
geom.mad()
Calculate the median of distances to the geometric mean
geom.mean()
Calculate the geometric mean
geom.median()
Calculate the geometric median
geom.sd()
Calculate the geometric standard deviation (GSD)
geom.var()
Calculate the geometric variance
geom.zscore()
Calculate the geometric standardized score
grouped.mean()
@title Calculate the grouped mean
grouped.median()
Calculate the grouped median
harm.mean()
Calculate the harmonic mean
hotdeck.impute()
Hot deck imputation
kurtosis()
Calculate kurtosis
mar.transform()
Transform data to missing values at random.
mcar.transform()
Transform data to missing values completely at random
mnar.transform()
Transform data to missing values not at random
pmean.match()
Predictive mean matching imputation (PMI)
quad.mean()
Calculate the quadratic mean
skewness()
Calculate skewness
stoc.impute()
Stochastic regression imputation (SRI)
variance()
Calculate variance
weight.harm.mean()
Calculate the weighted harmonic mean
z.scores()
Calculate z-scores