
Package index
-
check.mar()
- MAR check using logistic regression
-
check.mcar()
- Little's test for missing completely at random (MCAR)
-
check.missing()
- Check percent of missing values in data frame or matrix
-
cmean.impute()
- Conditional Mean Imputation (CMI)
-
coldeck.impute()
- Cold deck imputation
-
gen.mar()
- Generate a data frame with values missing at random
-
gen.mcar()
- Generate a data frame with values missing completely at random
-
gen.mnar()
- Generate a data frame with values missing not at random
-
geom.mad()
- Calculate the median of distances to the geometric mean
-
geom.mean()
- Calculate the geometric mean
-
geom.median()
- Calculate the geometric median
-
geom.sd()
- Calculate the geometric standard deviation (GSD)
-
geom.var()
- Calculate the geometric variance
-
geom.zscore()
- Calculate the geometric standardized score
-
grouped.mean()
- @title Calculate the grouped mean
-
grouped.median()
- Calculate the grouped median
-
harm.mean()
- Calculate the harmonic mean
-
hotdeck.impute()
- Hot deck imputation
-
kurtosis()
- Calculate kurtosis
-
mar.transform()
- Transform data to missing values at random.
-
mcar.transform()
- Transform data to missing values completely at random
-
mnar.transform()
- Transform data to missing values not at random
-
pmean.match()
- Predictive mean matching imputation (PMI)
-
quad.mean()
- Calculate the quadratic mean
-
skewness()
- Calculate skewness
-
stoc.impute()
- Stochastic regression imputation (SRI)
-
variance()
- Calculate variance
-
weight.harm.mean()
- Calculate the weighted harmonic mean
-
z.scores()
- Calculate z-scores