Skip to contents

Transform a complete case dataset according to the MCAR mechanism.The MCAR mechanism assumes that the probability of missingness is the same for all cases, and therefore,the missing data are not related to the observed data. transform.mcar uses the binomial distribution to generate NA an index of possible NA values that will replace a percentage of data points in the input.

Usage

mcar.transform(input, na_prob)

Arguments

input

data to transform using MCAR mechanism

na_prob

desired probability of NA count defined as the probability of success in a Bernoulli trial.

Value

a data frame or matrix containing NAs

Examples

set.seed(123)
data <- data.frame(x1 = stats::rnorm(100),x2 = stats::rnorm(100),y = stats::rnorm(100))
mcar_data <- mcar.transform(data,na_prob = .25)
#> Warning: One or more columns are at risk of being entirely NA.

summary(mcar_data)
#>        x1                x2                 y           
#>  Min.   :-2.3092   Min.   :-2.05325   Min.   :-1.75653  
#>  1st Qu.:-0.5234   1st Qu.:-0.80506   1st Qu.:-0.57397  
#>  Median : 0.1239   Median :-0.06344   Median : 0.02098  
#>  Mean   : 0.1477   Mean   :-0.06648   Mean   : 0.09745  
#>  3rd Qu.: 0.8580   3rd Qu.: 0.53030   3rd Qu.: 0.63075  
#>  Max.   : 2.1873   Max.   : 3.24104   Max.   : 2.29308  
#>  NA's   :29        NA's   :24         NA's   :19